
Python LDAP module reference

David Leonard

November 26, 1999

0.1 Module ldap

This module provides access to the University of Michigan’s LDAP (Lightweight
Directory Access Protocol) C interface. It is more-or-less compliant with the inter-
face described in RFC 1823, with the notable differences that lists are manipulated
via Python list operations, and errors appear as exceptions.

For more detailed information on the C interface, please see
the documentation that accompanies the package available from
ftp://terminator.rs.itd.umich.edu/ldap/ldap-3.3.tar.Z.

This documentation is current for the python ldap module, version
�����

.

0.1.1 Constants and Exceptions

The following exceptions and constants are exported from the module:

LDAPError
This is the base exeception class raised when some error arises within the
glue code between the C interface and the Python API.

ALIAS DEREF PROBLEM
ALIAS PROBLEM
ALREADY EXISTS
AUTH UNKNOWN
BUSY
COMPARE FALSE
COMPARE TRUE
CONSTRAINT VIOLATION
DECODING ERROR
ENCODING ERROR
FILTER ERROR
INAPPROPRIATE AUTH
INAPPROPRIATE MATCHING
INSUFFICIENT ACCESS
INVALID CREDENTIALS
INVALID DN SYNTAX
INVALID SYNTAX
IS LEAF
LOCAL ERROR
LOOP DETECT

1

NAMING VIOLATION
NOT ALLOWED ON NONLEAF
NOT ALLOWED ON RDN
NO OBJECT CLASS MODS
NO SUCH ATTRIBUTE
NO SUCH OBJECT
OBJECT CLASS VIOLATION
OPERATIONS ERROR
OTHER
PARAM ERROR
PARTIAL RESULTS
PROTOCOL ERROR
RESULTS TOO LARGE
SERVER DOWN
SIZELIMIT EXCEEDED
STRONG AUTH NOT SUPPORTED
STRONG AUTH REQUIRED
TIMELIMIT EXCEEDED
TIMEOUT
TYPE OR VALUE EXISTS
UNAVAILABLE
UNDEFINED TYPE
UNWILLING TO PERFORM
USER CANCELLED

These exceptions are raised when a result code from an underlying API call
does not indicate success.

PORT
The standard TCP port that LDAP servers listen on.

Many other (undocumented) constants available in the module correspond to those
found in the LDAP header file, <ldap.h>.

0.1.2 Functions

The following functions are available at the module level:

dn2ufn(dn)
Turns the DN dn into a more user-friendly form, stripping off type names.
See RFC 1781 “Using the Directory to Achieve User Friendly Naming” for
more details on the UFN format.

2

explode dn(dn [, notypes=0])
This function takes the DN dn and breaks it up into its component parts. Each
part is known as an RDN (Relative Distinguished Name). The notypes pa-
rameter is used to specify that only the RDN values be returned and not their
types. For example, the DN "cn=Bob, c=US" would be returned as ei-
ther ["cn=Bob", "c=US"] or ["Bob","US"] depending on whether
notypes was 0 or 1, respectively.

is ldap url(url)
This function returns true if url ‘looks like’ an LDAP URL (as opposed to
some other kind of URL).

open(host [, port=PORT])
Opens a new connection with an LDAP server, and returns an LDAP object
representative of this.

0.1.3 LDAP Objects

LDAP objects are created by the open() function defined at the top level of
the module. The connection is automatically unbound and closed during garbage
collection.

Most methods initiate an asynchronous request to the LDAP server and return a
message id that can be used later to retrieve the result. The methods ending with
s are the synchronous form and wait for and return with the server’s result, á la
result(), or with None if no data is expected. See the result() method for
a description of the data structure returned from the server.

Exceptions from methods

Unlike the C library, errors are not returned as result codes, but are instead turned
into exceptions, raised as soon an the error condition is detected. The exceptions
are accompanied by a dictionary containing extra information.

This dictionary contains an entry for the key ’desc’ for an English description of
the error class and ’info’ which contains a string containing more information
the server may have sent.

If the exception was one of NO SUCH OBJECT, ALIAS PROBLEM,
INVALID DNS SYNTAX, IS LEAF, or ALIAS DEREFERENCING PROBLEM,
then ’matched’ will be a key for the name of the lowest entry (object or alias)

3

that was matched and is a truncated form of the name provided or aliased derefer-
enced.

Methods on LDAP Objects

abandon(msgid)
Abandons or cancels an LDAP operation in progress. The msgid should
be the message id of an outstanding LDAP operation as returned by the
asynchronous methods search(), modify() etc. The caller can expect
that the result of an abandoned operation will not be returned from a future
call to result().

add(dn, modlist)
add s(dn, modlist)

This function is similar to modify(), except that no operation integer need
be included in the tuples.

bind(who, cred, method)
bind s(who, cred, method)
simple bind(who, passwd)
simple bind s(who, passwd)
kerberos bind s(who)
kerberos bind1(who)
kerberos bind1 s(who)
kerberos bind2(who)
kerberos bind2 s(who)

After an LDAP object is created, and before any other operations can be
attempted over the connection, a bind operation must be performed.

This method attempts to bind with the LDAP server using either simple
authentication, or kerberos. The general method bind() takes a third
parameter, method which can be one of AUTH SIMPLE, AUTH KRBV41 or
AUTH KRBV42. The cred parameter is ignored for Kerberos authentication.

Kerberos authentication is only available if the LDAP library and the ldap
module were compiled with -DWITH KERBEROS.

compare(dn, attr, value)
compare s(dn, attr, value)

Perform an LDAP comparison between the attribute named attr of entry dn,
and the value value. The synchronous form returns 0 for false, or 1 for true.
The asynchronous form returns the message id of the initiates request, and

4

the result of the asynchronous compare can be obtained using result().

Note that this latter technique yields the answer by raising the exception
objects COMPARE TRUE or COMPARE FALSE.

A design bug in the library prevents value from containing nul characters.

delete(dn)
delete s(dn)

Performs an LDAP delete operation on dn. The asynchronous form returns
the message id of the initiated request, and the result can be obtained from a
subsequent call to result().

destroy cache()
Turns off caching and removed it from memory.

disable cache()
Temporarily disables use of the cache. New requests are not cached, and the
cache is not checked when returning results. Cache contents are not deleted.

enable cache([timeout=NO LIMIT, [maxmem=NO LIMIT]])
Using a cache often greatly improves performance. By default the cache is
disabled. Specifying timeout in seconds is used to decide how long to keep
cached requests. The maxmem value is in bytes, and is used to set an upper
bound on how much memory the cache will use. A value of NO LIMIT for
either indicates unlimited. Subsequent calls to enable cache can be used
to adjust these parameters.

This and other caching methods are not available if the library and the ldap
module were compiled with -DNO CACHE.

flush cache()
Deletes the cache’s contents, but does not affect it in any other way.

modify(dn, modlist)
modify s(dn, modlist)

Performs an LDAP modify operation on an entry’s attributes. dn is the DN
of the entry to modify, and modlist is the list of modifications to make to the
entry.

Each element of the list modlist should be a tuple of the form
(mod op,mod type,mod vals), where mod op is the operation (one
of MOD ADD, MOD DELETE, or MOD REPLACE), mod type is a string indi-
cating the attribute type name, and mod vals is either a string value or a list of
string values to add, delete or replace respectively. For the delete operation,
mod vals may be None indicating that all attributes are to be deleted.

5

The asynchronousmodify() returns the message id of the initiated request.

See the ber * methods for decoding Basic Encoded ASN.1 values. (To be
implemented.)

modrdn(dn, newrdn [, delold=1])
modrdn s(dn, newrdn [, delold=1])

Perform a modify RDN operation. These routines take dn, the DN of the
entry whose RDN is to be changed, and newrdn, the new RDN to give to the
entry. The optional parameter delold is used to specify whether the old RDN
should be kept as an attribute of the entry or not. The asynchronous version
returns the initiated message id.

This actually corresponds to the modrdn2* routines in the C library.

result([msgid=RES ANY [, all=1 [, timeout=-1]]])
This method is used to wait for and return the result of an operation pre-
viously initiated by one of the LDAP asynchronous operation routines (eg
search(), modify(), etc.) They all returned an invocation identifier (a
message id) upon successful initiation of their operation. This id is guar-
anteed to be unique across an LDAP session, and can be used to request
the result of a specific operation via the msgid parameter of the result()
method.

If the result of a specific operation is required, msgid should be set to the
invocation message id returned when the operation was initiated; otherwise
RES ANY should be supplied.

The all parameter only has meaning for search() responses and is used to
select whether a single entry of the search response should be returned, or to
wait for all the results of the search before returning.

A search response is made up of zero or more search entries followed by a
search result. If all is 0, search entries will be returned one at a time as they
come in, via separate calls to result(). If all is 1, the search response
will be returned in its entirety, ie after all entries and the final search result
have been received.

The method returns a tuple of the form (result type, result data).
The result type is a string, being one of: ’RES BIND’,
’RES SEARCH ENTRY’, ’RES SEARCH RESULT’, ’RES MODIFY’,
’RES ADD’, ’RES DELETE’, ’RES MODRDN’, or ’RES COMPARE’.

The constants RES * are set to these strings, for convenience.

See search() for a description of the search result’s result data, otherwise
the result data is normally meaningless.

6

The result() method will block for timeout seconds, or indefinitely if
timeout is negative. A timeout of 0 will effect a poll. The timeout can be
expressed as a floating-point value.

If a timeout occurs, the tuple (None,None) is returned.

search(base, scope, filter [, attrlist=None [, attrsonly=0]])
search s(base, scope, filter [, attrlist=None [, attrsonly=0]])
search st(base, scope, filter [, attrlist=None [, attrsonly=0 [, timeout=-1]]])

Perform an LDAP search operation, with base as the DN of the entry at which
to start the search, scope being one of SCOPE BASE (to search the object
itself), SCOPE ONELEVEL (to search the object’s immediate children), or
SCOPE SUBTREE (to search the object and all its descendants).

filter is a string representation of the filter to apply in the search. Simple
filters can be specified as "attribute type=attribute value". More complex
filters are specified using a prefix notation according to the following BNF:

filter ����� "(" filtercomp ")"

filtercomp ����� and 	 or 	 not 	 simple

and ����� "&" filterlist

or ����� "|" filterlist

not ����� "!" filter

filterlist ����� filter 	 filter filterlist

simple ����� attributetype filtertype attributevalue

filtertype ����� "=" 	 "˜=" 	 "<=" 	 ">="
When using the asynchronous form andresult(), the all parameter affects
how results come in. For all set to 0, result tuples trickle in (with the same
message id), and with the result type RES SEARCH ENTRY, until the final
result which has a result type of RES SEARCH RESULT and a (usually)
empty data field. When all is set to 1, only one result is returned, with a
result type of RES SEARCH RESULT, and all the result tuples listed in the
data field.

Each result tuple is of the form (dn,attrs), where dn is a string containing
the DN (distinguished name) of the entry, and attrs is a dictionary containing
the attributes associated with the entry. The keys of attrs are strings, and the
associated values are lists of strings.

The DN in dn is extracted using the underlying ldap get dn(), which
may raise an exception if the DN is malformed.

7

If attrsonly is non-zero, the values of attrs will be meaningless (they are not
transmitted in the result).

The retrieved attributes can be limited with the attrlist parameter. If attrlist
is None, all the attributes of each entry are returned.

The synchronous form with timeout, search st(), will block for at most
timeout seconds (or indefinitely if timeout is negative). A TIMEOUT excep-
tion is raised if no result is received within the time.

set cache options(option)
Changes the caching behaviour. Currently supported options are
CACHE OPT CACHENOERRS, which suppresses caching of requests that
resulted in an error, and CACHE OPT CACHEALLERRS, which enables
caching of all requests. The default behaviour is not to cache requests
that result in errors, except those that result in a SIZELIMIT EXCEEDED
exception.

set rebind proc(func)
If a referral is returned from the server, automatic re-binding can be achieved
by providing a function that accepts as an argument the newly opened LDAP
object and returns the tuple (who, cred, method).

Passing a value of None for func will disable this facility.

Because of restrictions in the implementation, only one rebinding function is
supported at any one time. This method is only available if the module and
library were compiled with -DLDAP REFERRALS.

ufn setfilter(filtername)
ufn setprefix(prefix)
ufn search s(url [, attrsonly=0])
ufn search st(url [, attrsonly=0 [, timeout=-1]])

See the LDAP library manual pages for more information on these ‘user-
friendly name’ functions.

unbind s()
unbind()

This call is used to unbind from the directory, terminate the current associa-
tion, and free resources. Once called, the connection to the LDAP server is
closed and the LDAP object is invalid. Further invocation of methods on the
object will yield an exception.

The unbind and unbind s methods are identical, and are synchronous in
nature

8

uncache entry(dn)
Removes all cached entries that make reference to dn. This should be used,
for example, after doing a modify() involving dn.

uncache request(msgid)
Remove the request indicated by msgid from the cache.

url search s(url, [attrsonly=0])
url search s(url, [attrsonly=0 [, timeout=-1]])

These routine works much like search s*, except that many search pa-
rameters are pulled out of the URL url.

LDAP URLs look like this:

"ldap://host [:port] /dn [?attributes [?scope [?filter]]] "

where scope is one of base (default), one or sub, and attributes is a
comma-separated list of attributes to be retrieved.

URLs wrapped in angle-brackets and/or preceded by "URL:" are tolerated.

Attributes on LDAP Objects

Each LDAP object also sports the following attributes.

deref
Controls for when an automatic dereference of a referral occurs. This must
be one of DEREF NEVER, DEREF SEARCHING, DEREF FINDING, or
DEREF ALWAYS.

errno
error
matched

These read-only attributes are set after an exception has been raised, and
are also included with the value raised. See the section ‘Exceptions from
methods’, above.

lberoptions
Options for the BER library.

options
General options. This field is the bitiwse OR of the flags OPT REFERRALS
(follow referrals), and OPT RESTART (restart the select system call when
interrupted).

9

refhoplimit
Maximum number of referrals to follow before raising an exception. Defaults
to 5.

sizelimit
Limit on size of message to receive from server. Defaults to NO LIMIT.

timelimit
Limit on waiting for any response. Defaults to NO LIMIT.

valid
If zero, the connection has been unbound. See unbind() for more infor-
mation.

10

